
Steering Multiple Agents for Autonomous Navigation
in Virtual Environments

Johannes Zarl

August 26, 2010

Abstract

This work introduces the ufo steering library, a library for steering multiple agents
within virtual environments using runtime-configurable behaviours. The approach
used in this document allows for reuseability of steering behaviours and easy integra-
tion with existing virtual reality applications. This is demonstrated by providing an
interface to the inVRs framework ([1]).

1

Contents

1 Introduction 4

2 Concepts and Related Work 5
2.1 Boids . 5
2.2 Layers of Behaviour . 6

3 Implementation 7
3.1 Pilot . 7
3.2 Flock . 8
3.3 Behaviour . 8

3.3.1 Stackable Behaviours . 9
3.4 The Steerable Interface . 9

3.4.1 Communication between Pilot and Steerable 10
3.4.2 Communication between Steerable and Vehicle 10

3.5 From Configuration File to Flock . 10
3.5.1 Creating a ConfigurationReader . 10
3.5.2 Going from ConfigurationReader to Configurator 13

3.6 UfoDB . 13
3.7 Plugin System . 14

4 Integration with Existing Projects – inVRs 16
4.1 Steering an Application Object . 16
4.2 Following a User in the Application . 19
4.3 Integration with an Application . 24

5 Results 25

6 Conclusion and Future Work 29

7 References 30

2

List of Tables

1 EBNF grammar of ufo plain configuration format 12
2 Protocol between ConfigurationReader and Configurator 13

List of Figures

1 Core classes in the ufo library . 7
2 Collaboration diagram of ufo components during an update 8
3 Classes used for configuration . 11
4 Factory function lookup triggers loading of a plugin 14
5 A flock using 100 boids, using complex(left) or simplified behaviours (right) 25
6 Framerates of different behaviours at varying flocksizes 27
7 Effects of different caching intervals on the framerate 27
8 Performance gains of caching with multiple small flocks 28
9 Speedup of caching over number of flocks 28

List of Listings

1 Interface of the InVRsSteerable class . 16
2 Factory function for InVRsSteerable . 17
3 InVRsSteerable::steer() – Moving an inVRsEntity and updating posi-

tion, speed and orientation . 18
4 Interface of the FollowInVRsUserBehaviour class 19
5 Factory function for FollowInVRsUserBehaviour 20
6 Constructor for FollowInVRsUserBehaviour 21
7 Method FollowInVRsUserBehaviour::getUserFromDB() 21
8 Callbacks for (un)registering a User upon (dis)connect 22
9 Method FollowInVRsUserBehaviour::setUser() 23
10 Method FollowInVRsUserBehaviour::yield() 23
11 Initialising the UfoDB . 24

3

1 Introduction

Several decades have gone by since Reynolds wrote his seminal work on boids and the ac-
companying distributed behavioural model. Research in this field of research has not been
standing still, and today virtually no computer animated film and hardly any computer
game would be complete without flocking behaviours and steering algorithms.

However, surprisingly few general purpose (as in “not bound to a specific application”)
steering libraries exist. One notable example is the OpenSteer project [3], which, though
not easily usable as a library, offers a complete set of steering algorithms as described by
Reynolds [14].

One problem which possibly hinders development of a “standard steering library” is
the need for flexible behaviours in an application. In order to be useful, such a library
must allow application programmers to extend the library functionality, preferably without
recompilation of the whole library.

The ufo library, which is presented in this work, addresses this problem by using a plugin
system to manage extensions of the functionality, combined with runtime configuration.
The runtime configuration aspect allows for developing complex behaviours from several
simpler ones, without the need to recompile parts of an application in the process.

4

2 Concepts and Related Work

This section will give a short overview on the topics of flocking behaviours, steering con-
cepts, and related topics. A terminology will be given, based on the distributed behavioural
model described by Craig W. Reynolds [13]. This model stems from cinematographic com-
puter animation and was developed as a means to animate large numbers of animals in
a natural-looking way. Since its inception, behavioural models employing artificial intelli-
gence have emerged and tested with success, but they do not scale well for large groups of
agents[5].

2.1 Boids

The term boid originally refers to a “bird-like object”, typically as a member of a larger
group of similiar objects.

Historically, flocking boids are related to particle systems. Particle systems are often
used to model fuzzy objects such as smoke, fire, clouds or water[10]. Both techniques
use a large number of objects with individual behaviours. There are two main differences
between boid flocks and particle systems: boids have complex geometries, whereas particles
typically are 2-dimensional sprites without geometry. The other significant difference lies
in the behaviours – while boid behaviours are neccessarily dependent on the states of
other boids, particle behaviours are normally only dependent on internal state (age, color,
etc.)[13].

A boid does not have to represent a bird in the literal meaning, but is used as a general
term for any object exhibiting a similiar type of movement[13]. Therefore, a boid is an
individual member of a flock, swarm, herd, or school of “animals”. It can be thought of as
a social autonomous agent, i.e. an autonomous agent which interacts with other agents of
the same kind.

Traditionally, the interaction between boids is signified by three complementary com-
ponent behaviours[13, 6]: separation (collision avoidance between flockmates), cohesion
(flock centering or staying close to nearby flockmates), and alignment (velocity matching
with nearby flockmates). Using these three behaviours, very convincing flocks of animals
can be produced, though some patterns observed in nature (e.g. V-like formation flight)
call for different approaches [9].

To avoid confusion, this work generally uses the word flock to denote a group of boids,
regardless of which species is simulated. This term was chosen arbitrarily from the plethora
of synonyms, and is also used in the ufo library for the same concept (see section 3.2 on
page 8).

Even though the idea of boids is indeed very useful, in the ufo library several aspects of it
are represented by different classes rather than one single boid-class. From the outside, i.e.
from an application point of view, a boid is more or less equivalent to a Pilot. However, the
inner workings of a boid are further encapsulated: its physical representation is embodied
by the Steerable class, and its behavioural model is captured by the Behaviour class. All
of these classes are discussed in detail in section 3 on page 7. A benefit of this separation

5

is that the same steering behaviours can be used with different vehicles [6].

2.2 Layers of Behaviour

The behaviour of an autonomous agent encompasses many things: from basic character
animation and movement to advanced goal-oriented action and cognition every act by the
agent is governed by a behaviour. A classification of behaviours into several layers helps
to find meaningful ways of combining and selecting multiple behaviours.

Reynolds decomposes motion behaviours for autonomous agents into three layers[14]:
Action Selection as the highest layer refers to strategy, goal making and planning, i.e. what
to do. The middle layer, Steering, pertains to path determination, i.e. where to move.
Finally, the lowest layer is Locomotion, which encompasses animation and articulation of a
character, i.e. how to move. In this work, steering is used in the sense of path determination.

In the ufo library, the steering layer of this model corresponds to the Behaviour classes.
The locomotion layer is dealt with in the Steerable classes. Action selection is outside
the scope of this work.

A similiar approach is taken by Blumberg and Galyean[2]: They subdivide behaviours
according to the level of autonomy required to achieve their associated goals, called the
Level of Input. Three of these levels are identified: the Motivational Level, the Task Level,
and the Direct Level. The final action is a result of the blending of different behaviours
originating at these three levels.

Blumberg and Galyean focus on the blending of potentially competing behaviours and
aim to create a complete behavioural simulation of a virtual animal/pet[2]. Reynolds
focuses on the encapsulation between different layers, which allows using the same higher
level behaviours for different animals or means of locomotion, and then discusses different
steering behaviours in detail[14]. Further work on action selection has been done by Funge,
Tu and Terzepoulos[4].

Any reasonably complex autonomous agent consists of several different behaviours,
which influence the agent to varying degrees. Several techniques exist to switch between
these behaviours and blend them into a meaningful ensemble. Blending can simply calcu-
late the sum of all behaviours[6], or employ more elaborated schemes, such as the (weighted)
average[14], or mutual inhibition between behaviours[2]. Switching between behaviours can
either be assigned to the action selection layer [14], or be achieved using a weighted input
for blending.

In order to give the application developer the opportunity to use the blending technique
which suits his or her application, behavioural selection and blending is itself implemented
as a behaviour in the ufo library: A boid has exactly one behaviour, but a behaviour can
have child-behaviours. In this manner, a hierarchy of behaviours is created (see 3.3.1 on
page 9).

6

3 Implementation

ufo is a single-threaded steering library. It can steer one or more independent entities (via
Pilots), which can be optionally grouped to form Flocks. Figure 1 gives an overview over
ufo’s core classes. As can be seen, an application can access the UfoDB (see section 3.6 on
page 13), and via it the Flocks and Pilots. The Behaviour and Steerable of a Pilot is
not accessible from the outside.

Figure 1: Core classes in the ufo library

3.1 Pilot

From an application point-of-view, the Pilot corresponds to Reynold’s concept of a boid
– it has a position and a speed1, and it (optionally) belongs to a Flock.

1Within the scope of this document, speed always denotes the speed vector, not its magnitude.

7

The Pilot’s Behaviour and its Steerable define how the Pilot acts and which
application object it moves around, but both are themselves invisible to the applica-
tion. Figure 2 is a collaboration diagram of the ufo update phase. It shows how the
Pilot consults its Behaviour to reach a steering decision and then uses the Steerable

to steers an associated object in the application’s domain. The base implementation
of Pilot simply uses the result of Behaviour::yield() and feeds it to the method
Steerable::steer(SteeringDecision).

Figure 2: Collaboration diagram of ufo components during an update

Although one can inherit from Pilot, the base implementation is sufficient for most use-
cases and implements all functionality needed by the supplied Behaviours and Steerables.

3.2 Flock

Whenever two or more Pilots should behave as a group, depending on each others position,
and speed, they have to belong to the same Flock. Membership in a Flock allows each
Pilot to query the Flock for other Pilots without the need for an exhaustive search over
all Pilots in the UfoDB.

The supplied base implementation of Flock is essentially a vector of Pilots, but can be
extended to provide more advanced features, like querying by spatial neighborhood etc.

A Pilot can only belong to one Flock at a time.

3.3 Behaviour

In order to keep the Pilot simple, it does not compute the steering decision itself, but
uses the class Behaviour.

8

The Behaviour class can access the Pilot and, if available the Flock (and by this
means other Pilots of the same Flock). The typical Behaviour would thus base its
steering decision upon its Pilot’s position and speed, on the position and speed of its
neighbors, and on an internal target speed and position.

The class SteeringDecision combines a vector describing the desired speed, called
direction, and a quaternion describing the desired rotation. An implementation is allowed
to leave either or both components unset. For simplicity’s sake the rest of this document
will only discuss the desired speed vector, where the rotation is of no immediate importance.

The steering decision as computed by the Behaviour represents the desired speed (and
rotation). Constraints like a maximum speed value or a maximum applyable force are
added afterwards by the Steerable.

3.3.1 Stackable Behaviours

With more advanced behavioural patterns, the code complexity of the class implementing a
Behaviour quickly increases to a level at which changing and debugging the code becomes
prohibitively difficult. For this reason, the idea of stackable behaviours is proposed.

In contrast to the aforementioned typical Behaviour, a stackable Behaviour does not
itself compute a steering decision. Instead, it consults one or more child-behaviours, and
combines and modifies their output.

Using this approach complex behaviours can be developed by combining several simpler
behaviours. These simple behaviours can be easier modified and tested.

Another advantage of stackable behaviours lies in the flexible blending between child-
behaviours. The application developer can create a hierarchy of behaviour trees. Some of
these may always contribute towards the final steering decision, while other behaviours or
entire subtrees can be turned off 2.

3.4 The Steerable Interface

One design goal of ufo is to be usable as an add-on library. For this reason a clean split
between the steered entity inside the application domain and the Pilot was chosen. Instead
of forcing an application-writer to inherit the steered object from a generic one (as found
in [3]) an adaptor-class (Steerable) is used as an interface between the application and
the ufo-library.

The main implication of this approach is that the steered vehicle is updated indepen-
dently of the Pilot, i.e. the update-rate of the steering decisions is independent of the
update-rate of the simulation.

2In this manner, action selection could be implemented easily and without architectural changes to the
ufo library.

9

3.4.1 Communication between Pilot and Steerable

To set the desired velocity (and orientation), the Steerable interface provides the method
Steerable::steer(SteeringDecision). What to do with this information is up to the
class adhering to the Steerable interface. A simple implementation could just set the
object speed to the given value, while more sophisticated implementations could apply
physical restraints on the object.

In return the Pilot can ask for the current position, velocity and orientation of the
Steerable using the method Steerable::getPosition(), Steerable::getVelocity(),
and Steerable::getOrientation(), respectively.

3.4.2 Communication between Steerable and Vehicle

As mentioned before, a direct implication of the adaptor-approach is that updating the
vehicle is decoupled from updates in libufo. This allows the communication between
Steerable and vehicle to be relatively flexible.

If one’s application already has a vehicle implementation, the Steerable-implementa-
tion only has to translate the function calls accordingly, converting data types as needed.
The factory method then has to couple Steerable objects with vehicle objects. For an
example, see section 4.1 on page 16.

3.5 From Configuration File to Flock

ufo uses a three step setup to initialise Flocks and Pilots: first a ConfigurationReader is
created for the configuration file; second the configuration file is parsed and a Configurator
is created; at last, the UfoDB is populated by the Configurator. Figure 3 on the next page
demonstrates these steps.

3.5.1 Creating a ConfigurationReader

A ConfigurationReader implements the parsing of a configuration file or other configura-
tion resource. It provides a ConfigurationReader::readConfig() method, which returns
a Configurator object.

If an application writer decides to configure ufo in-band with his application’s con-
figuration, he can extend the ufo library with his own ConfigurationReader in a clean
way.

The default implementation for ConfigurationReader, PlainConfigurationReader
uses plain text files containing configuration data in the format depicted in table 1 on
page 12. Currently, PlainConfigurationReader is the only implementation for this in-
terface.

10

Figure 3: Classes used for configuration

11

UFOCFGPLAIN = "UFOCFGPLAIN" , { Flock | Pilot | Directive | Comment } ;

Flock = StorageModifier , "FLOCK" , Identifier , "{" ,

{ Parameters | Flock_Children }

"}" ;

Pilot = StorageModifier , "PILOT", Identifier , "{" ,

{ Parameters | Pilot_Children }

"}" ;

Directive = "pluginDirectory" , Path ;

Comment = "/*" , { Identifier } , "*/" ;

StorageModifier = "immediate" | "fromTemplate" | "template" ;

Identifier = letter , { letter | decimal digit | "_" | "-" } ;

Parameters = "parameters" , "{" ,

{ (Identifier , "=" , String) | Comment } ,

"}" ;

Flock_Children = "children" , "{" , {Pilot} , "}" ;

Pilot_Children = "children" , "{" , { Steerable | Behaviour } , "}" ;

Path = [["."] , "/"] , Identifier , { "/" , Identifier } ;

String = Identifier | (’"’ , Identifier , { " " Identifier } , ’"’) ;

Steerable = StorageModifier , "STEERABLE" , Identifier ,

"{" , { Parameters } "}" ;

Behaviour = StorageModifier , "BEHAVIOUR" , Identifier ,

"{" , { Parameters | Behaviour_Children } "}" ;

Behaviour_Children = "children" , "{" , { Behaviour } , "}" ;

Table 1: Extended Backus-Naur Form[7] grammar of ufo plain configuration format

12

static void addPluginDir(

Configurator *cfg,

std::string &path) ;

static void addElement(

Configurator *cfg,

ConfigurationElement *elem) ;

static void setTemplate(

Configurator *cfg,

std::string &name,

ConfigurationElement *elem) ;

Table 2: Functions in ConfigurationReader implementing the communication protocol with
the Configurator

3.5.2 Going from ConfigurationReader to Configurator

An implementation of ConfigurationReader always creates a Configurator and popu-
lates it with ConfigurationElements, templates and additional information (e.g. path
information for plugins).

For this purpose, it has to access and modify private data of the Configurator, and
therefore has to be a friend class of it. As friendship is not inherited, no subclasses of
ConfigurationReader can directly access the Configurator.

For this reason the protocol between ConfigurationReader and Configurator is fully
implemented as protected functions in the abstract base class ConfigurationReader.
Any implementation has to use these functions (see table 2) to communicate with the
Configurator.

By calling the method Configurator::bind(), the configuration is finalised and then
used to populate the UfoDB.

3.6 UfoDB

The UfoDB is the central database for all objects created by ufo. Its interface and its
relation to the other core classes of ufo can be seen in figure 1 on page 7.

All Flock, Pilot, Behaviour, and Steerable types must provide a factory function,
which has to be registered with the UfoDB before they can be used. This registration can
be done either manually, using the provided registration-methods, or automatically via the
plugin mechanism outlined in section 3.7.

Once the UfoDB has been populated by the Configurator, methods are provided to
access individual Flocks and Pilots.

Once per simulation-step, one should call UfoDB::update(dt), stepping the simulation

13

by the given amount of time for every Flock and Pilot.

3.7 Plugin System

Factory functions for every type of Flock, Pilot, Behaviour or Steerable are stored
in the UfoDB. Whenever a factory function is requested (by the Configurator::bind()

method) that is not already registered, plugin loading is triggered (see figure 4), and an
appropriate plugin file is searched in the plugin directories specified in the configuration
file.

Figure 4: Factory function lookup triggers loading of a plugin

Plugins are used in ufo to extend functionality in a transparent way. Without the
automatic plugin-loading, an application would need to know before loading its configu-
ration which types are used. Thus, plugins are a necessary means to enable full runtime-
configurability in applications.

14

A plugin file is a shared library that provides several C functions which are used to
check compatibility with the plugin and register its factory function. A C preprocessor
macro MAKEPLUGIN is provided for the developer, which automatically defines the necces-
sary functions. Any class deriving from one of the classes Steerable, Behaviour, Pilot,
or Flock is expected to use the namespace ufoplugin, if it uses the MAKEPLUGIN macro.

Security implications: It is possible to inject untrusted code into an application using
the plugin system. The confinement of plugin search to the given directories does reduce
the possibility of local exploits using this attack vector.

Other implications: Because any class loaded via a plugin is not known to the appli-
cation, it is possible that the operator delete of the plugin and the application doesn’t
match[8]. For this reason, a destroy method is suppllied for those classes which can be
loaded via plugins. Should it be neccessary for an application to explicitly destruct an
object created by the plugin system, this method has to be used.

15

4 Integration with Existing Projects – inVRs

In this section integration of the ufo library with an external project is demonstrated. For
this, the inVRs framework[1] was chosen. inVRs is an application framework which aims
to facilitate development of networked virtual environments.

4.1 Steering an Application Object

The inVRs framework organises objects in two databases: a UserDatabase for the local
user object and information about remote users, and a WorldDatabase for all other in-world
objects. Objects with which the user can interact are called Entities. In this chapter, a
custom Steerable class called InVRsSteerable will be created, which applies steering
decisions of the ufo library to such an Entity and translates position, orientation and
velocity data of the Entity back into the ufo library.

It will be shown how parameters can be passed from the configuration file to this
InVRsSteerable. Furthermore the example will show how additional restrictions can be
enforced at the Steerable-level. This will be done by limiting the speed value of an object
to a given maximum value.

Listing 1 shows the interface for the InVRsSteerable class. The class uses the name-
space ufoplugin, so it can use the MAKEPLUGIN macro (see section 3.7).

In this example, the values for position, velocity and orientation are cached in private
member variables of the InVRsSteerable class, and updated once during each simulation
step inside the steer method. The associated getter functions simply return the cached
value.

A factory function called InVRsSteerable is declared, which is supplied with a vector
of string-pairs containing the key-value pairs supplied within the configuration file. The
factory function is expected to use these values to create a suitable Steerable and return
it to its caller. If a suitable Steerable can not be created (e.g. due to wrong or missing
parameters), a null-pointer is to be returned.

1 namespace u fop lug in {
class InVRsSteerable

: public ufo : : S t e e r a b l e
{

public :
6 InVRsSteerable (Ent ity ∗ent , const f loat VMax) ;

virtual ˜ InVRsSteerable () ;
void s t e e r (const ufo : : S t e e r i n g D e c i s i o n& d ,

const f loat elapsedTime) ;
gmtl : : Po int3 f g e t P o s i t i o n () ;

11 gmtl : : Quatf g e tOr i en ta t i on () ;
gmtl : : Vec3f g e tVe l o c i t y () ;
void pr in t () const ;

16

private :
Ent ity ∗myEntity ; // p o i n t e r to s t e e r e d E n t i t y

16 f loat VMax; // maximum speed v a l u e
gmtl : : Po int3 f p o s i t i o n ;
gmtl : : Quatf o r i e n t a t i o n ;
gmtl : : Vec3f v e l o c i t y ;

} ;
21

ufo : : S t e e r a b l e ∗ InVRsSteerableFactory (std : : vector<std : : pa irC
<std : : s t r i ng , std : : s t r i ng> > ∗params) ;

}
Listing 1: Interface of the InVRsSteerable class

Listing 2 shows in detail, how this is done. Entities in inVRs can be uniquely identified
via an unsigned integer called the environmentBasedId. Therefore, an accordingly named
entry is searched in the configuration parameters and its value is converted from string
and saved into a variable. The same is done with the speed limit parameter called VMax.

The id of the entity is then used in line 24 to query the WorldDatabase for the correct
Entity, which in turn is used to initialise the InVRsSteerable.

u fo : : S t e e r a b l e ∗ u fop lug in : : InVRsSteerableFactory (std : : vector<C
std : : pa ir<std : : s t r i ng , std : : s t r i ng> > ∗params)

2 {
Entity ∗ ent =0;
f loat VMax = −1.0 f ;
unsigned int environmentBasedId =0;
for (std : : vector<std : : pa ir<std : : s t r i ng , std : : s t r i ng> > : :C

c o n s t i t e r a t o r i t = params−>begin () ;
7 i t != params−>end () ; ++i t)
{

i f (i t−> f i r s t == ” environmentBasedId ”)
{

s t r i ng s t r eam value ;
12 value . s t r (i t−>second) ;

va lue >> environmentBasedId ;
} else i f (i t−> f i r s t == ”VMax”)
{

s t r i ng s t r eam value ;
17 value . s t r (i t−>second) ;

va lue >> VMax;
} else {

cout << ”WARNING: unknown parameter to InVRsSteerable : ” C
<< i t−> f i r s t <<endl ;

17

}
22 }

// g e t s t e e r e d E n t i t y from inVRs WorldDatabase :
ent = WorldDatabase : : getEntityWithEnvironmentId (C

environmentBasedId) ;
i f (ent)
{

27 // c r e a t e \ u f o c l a s s { S t e e r a b l e }
return new InVRsSteerable (ent , VMax) ;

}
cout << ”ERROR: WorldDatabase doesn ’ t have an e n t i t y with C

environmentBasedId = ” << environmentBasedId << ”) ! ” <<C
endl ;

return 0 ;
32 }

Listing 2: Factory function for InVRsSteerable

Once the InVRsSteerable has been created, all the work is done in the method steer

(see listing 3). Because there is no notion of speed in inVRs , the velocity of an object has
to be maintained inside the InVRsSteerable. For the sake simplicity, no further limits
other than a maximum speed is enforced in this example.

In inVRs in a struct called TransformationData is used to hold the position and
orientation of an object. Moving the Entity is simply a matter of getting its associated
TransformationData, applying the position and orientation changes, and then setting the
new TransformationData for the Entity.

void u fop lug in : : InVRsSteerable : : s t e e r (const ufo : :C
S t e e r i n g D e c i s i o n &dec i s i on , const f loat elapsedTime)

{
3 v e l o c i t y = d e c i s i o n . d i r e c t i o n ;

// are we f a s t e r than VMax?
i f (VMax >= 0.0 && lengthSquared (v e l o c i t y) > VMax∗VMax)
{

// s c a l e V e l o c i t y to VMax:
8 normal ize (v e l o c i t y) ;

v e l o c i t y ∗= VMax;
}
// w r i t e transformat ionData :
TransformationData td = myEntity−>getWorldTransformation () ;

13 td . p o s i t i o n += v e l o c i t y ∗ elapsedTime ;
myEntity−>setWorldTransformation (td) ;

// update curren t S t e e r a b l e p o s i t i o n

18

p o s i t i o n = td . p o s i t i o n ;
18 o r i e n t a t i o n = td . o r i e n t a t i o n ;
}
Listing 3: InVRsSteerable::steer() – Moving an inVRsEntity and updating position,
speed and orientation

4.2 Following a User in the Application

In this section a Behaviour will be created, which is able to follow a user inside the inVRs
framework. As previously mentioned, users are stored by inVRs inside the UserDatabase.
In contrast to entities, users can connect and disconnect at any time. A callback mechanism
is provided by inVRs as a means to react to these events. Combined with the multithreaded
nature of inVRsapplications this calls for inter-thread-synchronisation.

Listing 4 shows the interface of the FollowInVRsUserBehaviour class. For inter-thread
synchronisation, the User object pointer, as well as two synchronisation variables are
marked as volatile. One callback object of each type AbstractUserConnectCB and
AbstractUserDisconnectCB are defined by inVRs .

1 namespace u fop lug in
{

class FollowinVRsUserBehaviour : public ufo : : Behaviour
{

public :
6 FollowinVRsUserBehaviour (const std : : s t r i n g name , const C

std : : s t r i n g p i l o tL ink , const bool verbose) ;
virtual ˜ FollowinVRsUserBehaviour () ;

ufo : : S t e e r i n g D e c i s i o n y i e l d (const f loat elapsedTime) ;
void pr in t () const ;

11

void r e g i s t e r U s e r (User ∗u) ;
void unr eg i s t e rUse r (User ∗u) ;

private :
const std : : s t r i n g username ;

16 volat i le User ∗ theUser ;
volat i le bool c r i t r e a d U s e r ;
volat i le bool c r i t w r i t e U s e r ;
// v a r i a b l e s to s t o r e c a l l b a c k o b j e c t s :
AbstractUserConnectCB ∗ucCB ;

21 AbstractUserDisconnectCB ∗udCB;

User ∗getUserFromDB () const ;

19

// he lper−f u n c t i o n to s w i t c h theUser t h r e a d s a f e l y :
void se tUser (User ∗u) ;

26 } ;

u fo : : Behaviour ∗FollowinVRsUserBehaviourFactory (std : : vector<C
ufo : : Behaviour ∗> ch i ld r en , std : : vector<std : : pa ir<std : :C
s t r i ng , std : : s t r i ng> > ∗params) ;

}
Listing 4: Interface of the FollowInVRsUserBehaviour class

Listing 5 shows the factory function. A FollowInVRsUserBehaviour is non-stackable,
therefore any child-Behaviours are ignored. The list of key-value pairs is searched for the
key username, and the FollowInVRsUserBehaviour is created.

1 ufo : : Behaviour ∗ u fop lug in : : FollowinVRsUserBehaviourFactory (stdC
: : vector<ufo : : Behaviour ∗> ch i ld r en , std : : vector<std : : pa ir<C
std : : s t r i ng , std : : s t r i ng> > ∗params)

{
s t r i n g username ;
for (std : : vector<std : : pa ir<std : : s t r i ng , std : : s t r i ng> > : :C

c o n s t i t e r a t o r i t = params−>begin () ;
i t != params−>end () ; ++i t)

6 {
i f (i t−> f i r s t == ”username”)
{

cout << ” InVRsSteerable parameter : username = ” << i t−>C
second <<endl ;

username = i t−>second ;
11 } else {

cout << ”WARNING: unknown parameter to C
FollowinVRsUserBehaviour : ” << i t−> f i r s t <<endl ;

}
}
i f (username . empty ())

16 {
cout << ”ERROR: FollowinVRsUserBehaviour : parameter ’C

username ’ must be s e t ! ” <<endl ;
return 0 ;

}
return new FollowinVRsUserBehaviour (username) ;

21 }
Listing 5: Factory function for FollowInVRsUserBehaviour

20

The constructor of the FollowInVRsUserBehaviour class (listing 6) first initialises the
two callback objects with the appropriate functions. Then, the UserDatabase is searched
for a suitable user. It should be kept in mind that during the initialisation phase of ufo,
remote users are unlikely to be connected yet. After this, the appropriate callback is
registered. The UserDatabase serialises callback execution, although different callbacks
may be executed concurrently. By only registering one of the two callback objects, the
synchronisation code can be simplified.

u fop lug in : : FollowinVRsUserBehaviour : : FollowinVRsUserBehaviourC
(const std : : s t r i n g name)

: username (name) , theUser (0) , c r i t r e a d U s e r (fa l se) , C
c r i t w r i t e U s e r (fa l se) ,

ucCB(new UserConnectCB<FollowinVRsUserBehaviour>(this ,&C
u fop lug in : : FollowinVRsUserBehaviour : : r e g i s t e r U s e r)) ,

4 udCB(new UserDisconnectCB<FollowinVRsUserBehaviour>(this ,&C
u fop lug in : : FollowinVRsUserBehaviour : : un r eg i s t e rUse r))

{
theUser = getUserFromDB () ;
i f (theUser)
{ // user found

9 UserDatabase : : r e g i s t e rUse rD i s connec tCa l l back (∗udCB) ;
} else { // user not connected (y e t)

UserDatabase : : r eg i s t e rUserConnectCa l lback (∗ucCB) ;
}

}
Listing 6: Constructor for FollowInVRsUserBehaviour

Listing 7 shows how a user is queried from the UserDatabase. The username localUser
is handled specially by always denoting the local user (even when there are remote users
of the same name and the local user uses a different name).

User ∗ u fop lug in : : FollowinVRsUserBehaviour : : getUserFromDB () C
const

2 {
// l o c a l or remote User?
i f (username == ” l o c a l U s e r ” | | username == UserDatabase : :C

getLoca lUser ()−>getName ())
{ // −> l o c a l U s e r :

return UserDatabase : : getLoca lUser () ;
7 }

// −> remote User
for (int i =0; i<UserDatabase : : getNumberOfRemoteUsers () ; i++)
{ // search remoteUsers

21

User ∗u = UserDatabase : : getRemoteUserByIndex (i) ;
12 i f (u−>getName () == username)

return u ;
}
// no user found :
return 0 ;

17 }
Listing 7: Method FollowInVRsUserBehaviour::getUserFromDB()

The two methods registerUser() and unregisterUser() are called from outside of
the ufo simulation thread by means of the callback mechanism provided by UserDatabase.
If no user is set, and a user connects, then the register method is called. If the user matches
the preset username, it is set as theUser and the callbacks are swapped. The unregister
method works analogously.

Within both methods, no members of the class may be accessed in a non-threadsafe
way. For this purpose, the synchronisation steps to change the user have been grouped in
a separate method FollowInVRsUserBehaviour::setUser() (listing 9).

void u fop lug in : : FollowinVRsUserBehaviour : : r e g i s t e r U s e r (User ∗ C
u)

{
3 i f (u−>getName () == username) // ”our” User?
{

se tUser (u) ;
// s w i t c h c a l l b a c k :
UserDatabase : : unreg i s te rUserConnectCa l lback (∗ucCB) ;

8 UserDatabase : : r e g i s t e rUse rD i s connec tCa l l back (∗udCB) ;
}

}

void u fop lug in : : FollowinVRsUserBehaviour : : un r eg i s t e rUse r (User C
∗ u)

13 {
i f (u == theUser) // ”our” User?
{

se tUser (0) ;
// s w i t c h c a l l b a c k :

18 UserDatabase : : unreg i s t e rUse rDi s connec tCa l lback (∗udCB) ;
UserDatabase : : r eg i s t e rUserConnectCa l lback (∗ucCB) ;

}
}

Listing 8: Callbacks for (un)registering a User upon (dis)connect

22

The following scheme has been chosen for synchronisation between the the setUser()

and yield() methods: before accessing the volatile theUser variable, yield() sets a read-
lock an then checks if a write lock has been set. If this is the case, yield() exists its critical
section without accessing the variable (listing 10). Similiarly, the setUser() method first
sets a write-lock, and then waits until the read-lock has been released. After this, theUser
is written and the write lock is released. The code works under the assumption that a
compiler does not reorder reads and writes to volatile variables. While not applicable as
a general-purpose mutex mechanism, this algorithm has the advantage of being portable
and not being dependent on external libraries.

void u fop lug in : : FollowinVRsUserBehaviour : : s e tUser (User ∗u)
{

c r i t w r i t e U s e r = true ;
4 // wai t f o r y i e l d to l e a v e i t s c r i t i c a l s e c t i o n :

while (c r i t r e a d U s e r)
; // busy wai t

theUser = u ;
// l e a v e our c r i t i c a l s e c t i o n :

9 c r i t w r i t e U s e r = true ;
}

Listing 9: Method FollowInVRsUserBehaviour::setUser()

The only thing missing now in the FollowInVRsUserBehaviour is the yield(), which
is can be seen in listing 10. As discussed in the previous paragraph, access to the user object
is restricted to the critical section of the method. Because the user object is volatile, a
const cast is needed to make the returned value of getWorldUserTransformation non-
volatile. Once the TransformationData has been read, computing the correct heading is
trivial.

ufo : : S t e e r i n g D e c i s i o n u fop lug in : : FollowinVRsUserBehaviour : :C
y i e l d (const f loat elapsedTime)

{
// enter c r i t i c a l s e c t i o n :
c r i t r e a d U s e r = true ;

5 i f (! c r i t w r i t e U s e r && theUser)
{

TransformationData td = const cast<User ∗>(theUser)−>C
getWorldUserTransformation () ;

// l e a v e c r i t i c a l s e c t i o n :
c r i t r e a d U s e r = fa l se ;

10

S t e e r i n g D e c i s i o n r e t v a l (
td . p o s i t i o n − myPilot−>g e t P o s i t i o n () ,

23

td . o r i e n t a t i o n) ;
return r e t v a l ;

15 } else {
// l e a v e c r i t i c a l s e c t i o n :
c r i t r e a d U s e r = fa l se ;
// no User a v a i l a b l e .
return S t e e r i n g D e c i s i o n () ;

20 }
}

Listing 10: Method FollowInVRsUserBehaviour::yield()

4.3 Integration with an Application

In order to use ufo in an application, it is sufficient to make two modifications to the
source code: first, the UfoDB needs to be initialised, and second, the UfoDB::update()

method has to be called regularily (normally in the display-loop). Listing 11 shows the
code necessary to initialise UfoDB wrapped in a simple function.

void i n i t U f o (std : : s t r i n g c o n f i g F i l e)
{

Conf igurat ionReader ∗ cfgReader =0;
4 Conf igurator ∗ c f g =0;

cfgReader = new Pla inConf igurat ionReader (c o n f i g F i l e) ;
c f g = cfgReader−>readConf ig () ;

9 // we don ’ t need the cfgReader any more :
delete cfgReader ;

i f (c f g)
{

14 i f (c fg−>bind ())
std : : cout << ” i n i t U f o () : i n i t i a l i s a t i o n succeeded ” << C

endl ;
// Conf igura tor i s no l o n g e r needed :
delete c f g ;

}
19 }

Listing 11: Initialising the UfoDB

24

5 Results

In section 4 iS has been described that ufo can be integrated easily with an existing
project. This section will look at possible performance bottlenecks and general performance
considerations.

For example, figure 5 shows two flocks of the same size, but with a different set of
behaviours. The complex swarm uses some boid-behaviours (alignment, cohesion, sepa-
ration) twice with different scale-factor and flock-neighbourhood parameters. The result
is a less uniform, more naturalistic looking flock behaviour compared to the same flock
without the additional behaviours. The other, simplified flock does not use any boid-
behaviour more than once. Instead, the randomized component of the behaviour has been
given more weight. This has the effect of disturbing the uniform motion created by the
boid-behaviours, thus also leading to a naturalistic looking flock.

Figure 5: A flock using 100 boids, using complex(left) or simplified behaviours (right)

Figure 6 on page 27 shows the decrease in performance with increasing flock size. All
measurements have been done on an Intel R© CoreTM 2 Quad at 2.5 GHz with 6 GByte
of RAM, running Debian linux. The measurements were taken without graphics output
using a single thread (ufo currently has no threading capabilities). Not surprisingly, the
simple flock consistently shows almost double the framerate compared with the complex
flock. Still, as the boid-behaviours, as implemented in ufo, have an asymptotic complexity
of O(n2), this doubled framerate only buys a few boids worth of performance, before the
framerates collapses.

This problem can be mitigated using spatial databases supporting neighbourhood query,
ideally leading to an asymptotic complexity of O(n)[11]. However, the (fixed) overhead of

25

a spatial database can make the problem worse for smaller flocks, and finding the correct
setup parameters for the database needs to be done again for each new application. The
spatial database approach is therefore best suited for deployment during towards the end
of a project, when the approximate space distribution of the flock is known.

Another source for performance gains is the decoupling of boid-behaviours from the gen-
eral update-rate[11]. This decoupling is achieved in the ufo behaviour CachingBehaviour
by caching the steering decision until the aggregated time reaches the cache time limit
deltaTMin. The third line in figure 6 on the following page shows the effects of this de-
coupled behaviour with a time limit of 40 ms, which corresponds to a framerate of 25
frames-per-second. In this case the caching does not perform better than the initial com-
plex behaviour for flock sizes bigger than 200 boids.

This fact is easily explained by looking at the initial behaviour without caching: at 200
boids, the performance drops below 25 fps. Thus, the cached steering decision is invalidated
before its calculation has finished.

Figure 7 on the next page shows the effect of different caching intervals on the framerate
(shown as logarithmic scale). The underlying behaviour is the same complex behaviour as
in the example shown above, with 200 boids in one flock. Without caching, the achievable
framerate is around 14 fps. This means that one update cycle takes around 71 ms to
complete. Unsurprisingly, this coincides with the performance drop apparent in the graph.

For this reason, the minimum time for caching δtmin must follow the formula

δtmin ≥
1

fps

in order for caching to be effective. Reynolds reports simulation framerates as low as 10 fps
to be sufficient for flocking to appear fluid[11], so in the example above a value of 80 ms
for δtmin would be a suitable choice.

Caching is most effective when using multiple flocks: As long as each flock is small
enough to benefit from caching at the desired framerate, a superlinear speedup can be
observed. Figure 8 on page 28 shows the framerate of multiple independent flocks with 100
boids each. The scale is logarithmic, and the behaviours are the same as in the previous
examples.

As we know from figure 6, the flock size of 100 boids is well below the “breakdown size”
at the cache interval of 40 ms. For both behaviours, the framerate decreases linearly with
the number of flocks, but the caching behaviour allows the system to run at framerates
well beyond 1000 fps. It should be noted however, that in the observed dataset the speedup
decreases linearly with an increased number of flocks (figure 9).

26

Figure 6: Framerates of different behaviours at varying flocksizes

Figure 7: Effects of different caching intervals on the framerate

27

Figure 8: Performance gains of caching with multiple small flocks

Figure 9: Speedup of caching over number of flocks

28

6 Conclusion and Future Work

This work has described a library that provides all facilities which are needed to add
flocking and steering functionality to an existing application. The library is not bound to
a predefined 3D graphics API and, using a plugin system, can be extended without the
need for recompilation of either the ufo library or the application itself.

The basic approach of using simple steering behaviours for building more complex
behaviours in a flexible and modular fashion has proved successful. No significant overhead
could be observed, while the modular design allowed a low turnaround time during creation
and testing of complex behaviours.

Further flexibility could be gained by creating full support for reconfiguring ufo during
run-time. For this to work one would have to add facilities to UfoDB, allowing deletion of
Flocks and Pilots. Care has to be taken to gracefully deal with inter-flock and inter-pilot
dependencies. These alterations would provide basic support for run-time reconfiguration,
enough to create and delete pilots as steerable objects are created and deleted by an
application.

Another possible field for improvement lies in leveraging hardware parallelism[12]. How-
ever, as animated swarms of animals are most often used solely as an ambient visual effect
for increasing the general realism of a virtual environment, they normally must not interfere
with general application performance. For this reason, even on modern multiprocessor sys-
tems, the single threaded approach taken by the ufo library can be sufficient and appealing
for an application developer.

29

7 References

[1] Christoph Anthes. A Collaborative Interaction Framework for Networked Virtual En-
vironments. PhD thesis, Institute of Graphics and Parallel Processing at JKU Linz,
Austria, Institute of Graphics and Parallel Processing at JKU Linz, Austria, August
2009.

[2] Bruce M. Blumberg and Tinsley A. Galyean. Multi-level direction of autonomous
creatures for real-time virtual environments. In SIGGRAPH ’95: Proceedings of the
22nd annual conference on Computer graphics and interactive techniques, pages 47–54,
New York, NY, USA, 1995. ACM. doi:10.1145/218380.218405.

[3] Craig Reynolds et al. OpenSteer – steering behaviors for autonomous characters.
Available from: http://opensteer.sourceforge.net/.

[4] John Funge, Xiaoyuan Tu, and Demetri Terzopoulos. Cognitive modeling: knowledge,
reasoning and planning for intelligent characters. In SIGGRAPH ’99: Proceedings of
the 26th annual conference on Computer graphics and interactive techniques, pages
29–38, New York, NY, USA, 1999. ACM Press/Addison-Wesley Publishing Co. doi:
10.1145/311535.311538.

[5] Stephen Grand and Dave Cliff. Creatures: Entertainment software agents with ar-
tificial life. Autonomous Agents and Multi-Agent Systems, 1(1):39–57, 1998. doi:

10.1023/A:1010042522104.

[6] Robin Green. Steering behaviours, 2000. SIGGRAPH 2000 Course on Games Re-
search. Available from: http://www.red3d.com/siggraph/2000/course39/.

[7] ISO/IEC. Extended BNF, Dec 1996. Available from: http://standards.iso.org/

ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip.

[8] Aaron Isotton. C++ dlopen mini howto, March 2006. Revision 1.10. Available from:
http://tldp.org/HOWTO/C++-dlopen/index.html.

[9] Andre Nathan and Valmir C. Barbosa. V-like formations in flocks of artificial birds.
Artif. Life, 14(2):179–188, 2008. doi:10.1162/artl.2008.14.2.179.

[10] W. T. Reeves. Particle systems—a technique for modeling a class of fuzzy objects.
ACM Trans. Graph., 2(2):91–108, 1983. doi:10.1145/357318.357320.

30

http://dx.doi.org/10.1145/218380.218405
http://opensteer.sourceforge.net/
http://dx.doi.org/10.1145/311535.311538
http://dx.doi.org/10.1145/311535.311538
http://dx.doi.org/10.1023/A:1010042522104
http://dx.doi.org/10.1023/A:1010042522104
http://www.red3d.com/siggraph/2000/course39/
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://tldp.org/HOWTO/C++-dlopen/index.html
http://dx.doi.org/10.1162/artl.2008.14.2.179
http://dx.doi.org/10.1145/357318.357320

[11] C. Reynolds. Interaction with groups of autonomous characters. In Proceedings of
Game Developers Conference 2000, pages 449–460, San Francisco, California, 2000.
CMP Game Media Group (formerly: Miller Freeman Game Group).

[12] Craig Reynolds. Big fast crowds on ps3. In Sandbox ’06: Proceedings of the 2006
ACM SIGGRAPH symposium on Videogames, pages 113–121, New York, NY, USA,
2006. ACM. doi:10.1145/1183316.1183333.

[13] Craig W. Reynolds. Flocks, herds, and schools: A distributed behavioral model.
Computer Graphics, 21(4):25–34, July 1987. doi:10.1145/37401.37406.

[14] Craig W. Reynolds. Steering behaviors for autonomous characters. In Game Devel-
opers Conference 1999, 1999. Available from: http://www.red3d.com/cwr/papers/

1999/gdc99steer.html.

31

http://dx.doi.org/10.1145/1183316.1183333
http://dx.doi.org/10.1145/37401.37406
http://www.red3d.com/cwr/papers/1999/gdc99steer.html
http://www.red3d.com/cwr/papers/1999/gdc99steer.html

	Introduction
	Concepts and Related Work
	Boids
	Layers of Behaviour

	Implementation
	Pilot
	Flock
	Behaviour
	Stackable Behaviours

	The Steerable Interface
	Communication between Pilot and Steerable
	Communication between Steerable and Vehicle

	From Configuration File to Flock
	Creating a ConfigurationReader
	Going from ConfigurationReader to Configurator

	UfoDB
	Plugin System

	Integration with Existing Projects – inVRs
	Steering an Application Object
	Following a User in the Application
	Integration with an Application

	Results
	Conclusion and Future Work
	References

